Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers

All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in Q( √ −3) are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3. In 1978 W. Feit [10] classified the unimodular hermitian lattices of dimensions up to 12 over the ring Z[ω] of Eisenstein integers, where ω is a primitive third root of unity. Th...

متن کامل

ETRU: NTRU over the Eisenstein integers

NTRU is a public-key cryptosystem based on polynomial rings over Z. Replacing Z with the ring of Eisenstein integers yields ETRU. We prove through both theory and implementation that ETRU is faster and has smaller keys for the same or better level of security than does NTRU.

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

Étale Lattices over Quadratic Integers

We construct lattices with quadratic structure over the integers in quadratic number fields having the property that the rank of the quadratic structure is constant and equal to the rank of the lattice in all reductions modulo maximal ideals. We characterize the case in which such lattices are free. The construction gives a representative of the genus of such lattices as an orthogonal sum of “s...

متن کامل

Linear Independence of q-Logarithms over the Eisenstein Integers

For fixed complex q with |q| > 1, the q-logarithm Lq is the meromorphic continuation of the series ∑ n>0 z / q −1 , |z| < |q|, into the whole complex plane. IfK is an algebraic number field, one may ask if 1, Lq 1 , Lq c are linearly independent over K for q, c ∈ K× satisfying |q| > 1, c / q, q2, q3, . . .. In 2004, Tachiya showed that this is true in the Subcase K Q, q ∈ Z, c −1, and the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2009

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-08-02131-5